Basen

Im Sinne einer kleinen Vorbereitung auf die nächsten Themen betrachten wir diese Woche einige Begriffe der linearen Algebra (LinAlg).

Basen

Dazu betrachten wir drei Bereiche

Aufgabe

Click to display ⇲

Click to hide ⇱

  1. $p_n(x)=\sum_{i=0}^n a_i\cdot x^i, \quad$ mit $a_i\in\mathbb{R}$ und $a_n\neq 0$
  2. $T_n(x)=\sum_{i=0}^n a_i\cdot \cos (ix) + b_i \cdot \sin (ix), \quad$ mit $a_i,b_i \in\mathbb{R}$ und $a_n \lor b_n \neq 0$
  3. $\mathbb{R}^n:\; \vec{v}=\sum_{i=1}^n a_i\cdot \vec{e}_i, \quad$ mit $a_i\in\mathbb{R}$ und $\vec{e}_i=\left( \begin{array}{c} 0 \\...\\1\\...\\0 \end{array} \right)$, d.h. mit einer $1$ in der $i$-ten Zeile.

Aufgabe

Click to display ⇲

Click to hide ⇱

Die Grundbausteine heissen Basiselemente, alle Grundelemente zusammen nennen wir eine Basis. Eine Basis beinhaltet die minimale Anzahl von Elementen um die algebraische Struktur aufzubauen. Beachte: Basiselemente können auch Funktionen sein! ($\cos(ix), \; x^i$)

Click to display ⇲

Click to hide ⇱

Es ist eine gewichtete Summe, d.h. die Basiselemente werden mit einem Faktor $a_i$ multipliziert (gewichtet) und danach addiert. Dieses Konstrukt heisst Linearkombination.

Polynombasis

Ein Polynom vom Grad $n$ in der Variable $x$ hat die Grundform $p_n(x)=\sum_{i=0}^n a_i\cdot x^i$ und damit die Basiselemente $$1,\; x,\; x^2,\; \dots,\; x^n $$ Alle diese Elemente als Menge bilden die Basis von $p_n$.

Basis eines trigonometrischen Polynoms

Ein trigonometrisches Polynom vom Grad $n$ in der Variablen $x$ hat die Grundform $T_n(x)=\sum_{i=0}^n a_i\cdot \cos (ix) + b_i \cdot \sin (ix)$ und damit die Basiselemente $$1,\; \cos(x),\; \sin(x),\; \cos(2x),\; \sin(2x),\; \dots ,\; \cos(nx),\; \sin(nx)$$

Die Ebene ($\mathbb{R}^2$) und der Raum ($\mathbb{R}^3$)

Als nächstes folgt die Darstellung von Vektoren mit einem Koordinatensystem in der Ebene ($\mathbb{R}^2$) und im Raum ($\mathbb{R}^3$). Dazu verwenden wir ein kartesisches Koordinatensystem.

$\qquad$

Jeder Vektor $\vec{v}$ wird als Summe der Richtungsvektoren (entlang der Koordinatenachsen) $\vec{v}_x$, $\vec{v}_x$ und $\vec{v}_z$ aufgefasst. D.h. $$\vec{v}=\vec{v}_x + \vec{v}_y + \vec{v}_z $$ Die Richtungsvektoren sind wiederum skalare Vielfache der Einheitsvektoren $\vec{e}_x$, $\vec{e}_y$ und $\vec{e}_z$. Diese Einheitsvektoren (auch Basisvektoren genannt) haben die Länge 1 und die Richtung der entsprechenden Koordinatenachsen. $$\vec{v}_x=v_x\cdot \vec{e}_x, \quad \vec{v}_y=v_y\cdot \vec{e}_y, \quad\vec{v}_z=v_z\cdot \vec{e}_z$$ Jeder Vektor $\vec{v}$ lässt sich wie folgt aufschreiben. $$ \vec{v}=\vec{v}_x + \vec{v}_y + \vec{v}_z =v_x\cdot \vec{e}_x + v_y\cdot \vec{e}_y + v_z\cdot \vec{e}_z$$ Mit der Konvention in der Ebene$$\vec{e}_x=\left( \begin{array}{c} 1\\0 \end{array} \right),\quad \vec{e}_y=\left( \begin{array}{c} 0\\1 \end{array} \right) $$ und im Raum $$\vec{e}_x=\left( \begin{array}{c} 1\\0\\0 \end{array} \right),\quad \vec{e}_y=\left( \begin{array}{c} 0\\1\\0 \end{array} \right),\quad \vec{e}_z=\left( \begin{array}{c} 0\\0\\1 \end{array} \right) $$ergibt sich folgende Darstellung eines Vektors mit kartesischen Koordinaten. $$\vec{v}=v_x\cdot \vec{e}_x + v_y\cdot \vec{e}_y = v_x\cdot \left( \begin{array}{c} 1\\0 \end{array} \right) + v_y\cdot \left( \begin{array}{c} 0\\1 \end{array} \right) = \left( \begin{array}{c} v_x\\0 \end{array} \right) + \left( \begin{array}{c} 0\\v_y \end{array} \right) = \left( \begin{array}{c} v_x\\v_y \end{array} \right)$$

$$\vec{v}=v_x\cdot \vec{e}_x + v_y\cdot \vec{e}_y + v_z\cdot \vec{e}_z = v_x\cdot \left( \begin{array}{c} 1\\0\\0 \end{array} \right) + v_y\cdot \left( \begin{array}{c} 0\\1\\0 \end{array} \right) + v_z\cdot \left( \begin{array}{c} 0\\0\\1 \end{array} \right) = \left( \begin{array}{c} v_x\\v_y\\v_z \end{array} \right)$$ Abschliessend noch drei Bezeichnungen:

Aufgabe

Click to display ⇲

Click to hide ⇱

Ja, gibt es! Sogar unendlich viele verschiedene Basen. Mit einer Basis lässt sich eine Linearkombination $\sum_{i=1}^3 a_i\cdot \vec{e}_i$ bilden, mit der jeder Punkt des Raums erreichbar / adressierbar ist.

Orthogonale Basen

Sind die Basisvektoren paarweise senkrecht zueinander, dann sprechen wir von einer orthogonalen Basis. Orthogonal bedeutet: $$\vec{a}\cdot \vec{b}=0$$

Aufgabe

Sind die Beträge der Basisvektoren eins, so sprechen wir von einer normierten Basis. Orthogonal und normiert zusammen führt zum Begriff der Orthonormalbasis.

Aufgabe

Orthogonale Projektion

Gegeben sind die beiden Vektoren $\vec{v}_1$ und $\vec{v}_2$. Gesucht ist der Anteil von $\vec{v}_2$, welcher orthogonal zu $\vec{v}_1$ verläuft.

Dazu bestimmen wir den Anteil von $\vec{v}_2$ in Richtung von $\vec{v}_1$ und subtrahieren diesen von $\vec{v}_2$. Es gilt: $$\vec{v}_{21P}=\alpha \cdot \vec{v}_1 \qquad \text{und} \qquad \vec{v}_{21O}=\vec{v}_2-\vec{v}_{21P}$$ Wegen der Orthogonalität gilt weiter $$\vec{v}_{21O}\cdot \vec{v}_1 =0 $$ setzen wir ein erhalten wir $$\left( \vec{v}_2-\alpha \cdot \vec{v}_1 \right) \cdot \vec{v}_1 =0 $$ Damit gilt für $\alpha$ $$\alpha = \frac{\vec{v}_1 \cdot \vec{v}_2}{\vec{v}_1 \cdot \vec{v}_1}= \frac{\vec{v}_1 \cdot \vec{v}_2}{|\vec{v}_1|^2}$$ und damit gilt für $\vec{v}_{21O}$ $$\vec{v}_{21O}=\vec{v}_{2} - \frac{\vec{v}_1 \cdot \vec{v}_2}{|\vec{v}_1|^2} \cdot \vec{v}_1$$

Orthogonale Basis

Seien die Vektoren $\vec{a},\; \vec{b},\; \vec{c}, \; \vec{d}$ eine Basis des $\mathbb{R}^4$. Dann können wir schrittweise durch orthogonale Projektion eine Orthogonalbasis berechnen.

  1. $\vec{a}$ bleibt
  2. $$\vec{b'}=\vec{b}-\frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2} \cdot \vec{a}$$
  3. $$\vec{c'}=\vec{c}-\frac{\vec{a}\cdot\vec{c}}{|\vec{a}|^2} \cdot \vec{a} - \frac{\vec{b'}\cdot\vec{c}}{|\vec{b'}|^2} \cdot \vec{b'}$$
  4. $$\vec{d'}=\vec{d}-\frac{\vec{a}\cdot\vec{d}}{|\vec{a}|^2} \cdot \vec{a} - \frac{\vec{b'}\cdot\vec{d}}{|\vec{b'}|^2} \cdot \vec{b'} - \frac{\vec{c'}\cdot\vec{d}}{|\vec{c'}|^2} \cdot \vec{c'}$$
  5. allgemein: $$\vec{v}'_i=\vec{v}_i- \sum_{k=1}^{i-1}\frac{\vec{v}_k\cdot\vec{v}_i}{|\vec{v}_k|^2} \cdot \vec{v}_k, \quad \text{für }i\in\{2,3,\dots,n\}$$
  6. bleibt noch die Normierung mit $$\vec{e}_a=\frac{1}{|\vec{a}|}\cdot \vec{a} $$

Aufgabe

Implementiere obigen Algorithmus in Python für eine Basis vom $\mathbb{R}^3$ und $\mathbb{R}^4$.