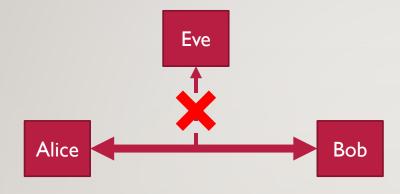
WERNER WINKELMANN

KRYPTOLOGIE 2

Basierend auf


- https://www.inf-schule.de/
- http://ip-klaeden.selfhost.eu/netz/iuk99/kap8/kap8.htm
- https://www.wikipedia.org/
- https://oinf.ch/kurs/informationsgesellschaft/verschluesselung/
- Diverse Videos

REPETITION

- Kryptologie
 - Kryptographie
 - Kryptoanalyse
 - Steganographie

Welche Ziele verfolgt die Kryptographie?

1. Vertraulichkeit

3. Authentizität

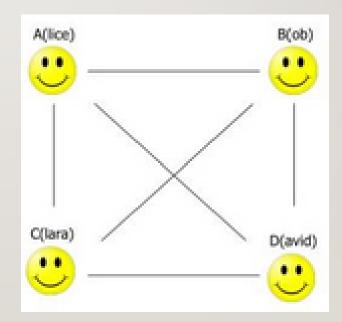
2. Integrität Eve Bob

4. Verbindlichkeit

SYMMETRISCHE VERSCHLÜSSELUNG

I. Transposition: Skytale

2. Substitution

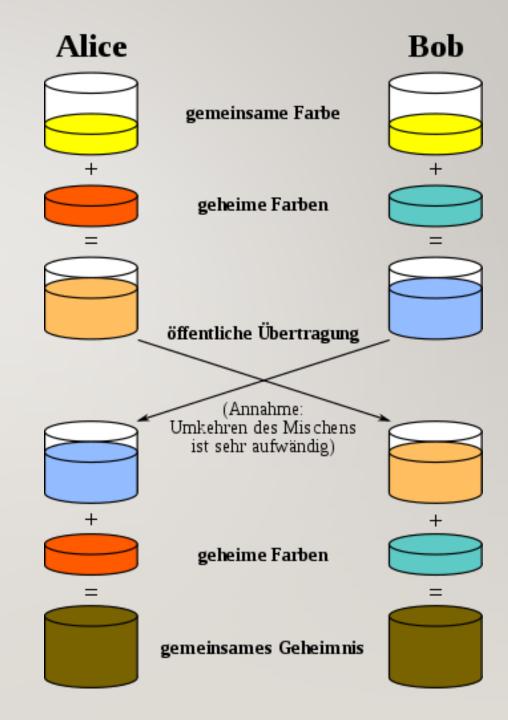

Monoalphabetisch: Cäsar

Polyalphabetisch: Vigenère, One-Time-Pad

PROBLEME VON SYMMETRISCHEN VERSCHLÜSSELUNGEN

Schlüsselaustausch

Schlüsselverwaltung



EINSTIEG

- Diffie-Hellman-Merkle
- Kerckhoff

DIFFIE-HELLMAN-MERKLE

 Schlüsselaustausch über einen nicht sicherem Kanal

D-H-M mit Zahlen

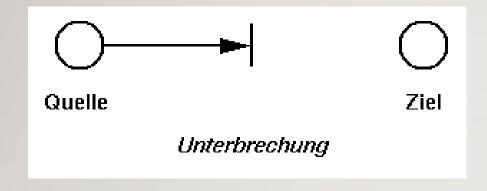
Gemeinsame Zahlen (Öffentlicher Schlüssel)			
p (Primzahl):	13		
g (< p):	2		
Alice x (zufällig)	5		
Bob y (zufällig):	8		
Berechnete öffentliche Werte:			
Alice	$a = g^x \mod p = 2^5 \mod 13 = 6$		
Bob	b = g ^y mod p = 2 ⁸ mod 13 = 9		
Berechnete Schlüss	echnete Schlüsselwerte:		
Alice	schlüssel = $b^x \mod p = 9^5 \mod 13 = 3$		
Bob	schlüssel = a ^y mod p = 6 ⁸ mod 13 = 3		

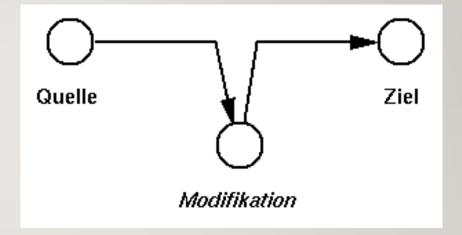
Was ist ein sicheres Kryptosystem?

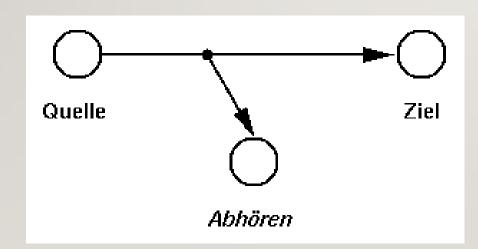
"In einem guten Kryptosystem muss nur der Schlüssel geheim bleiben."

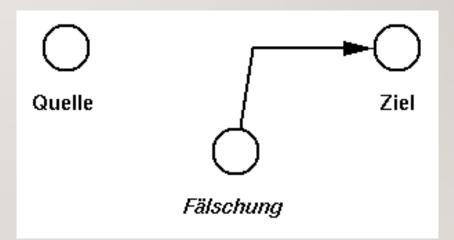
Kerckhoff (1883):

"Ein Kryptosystem ist sicher, wenn man trotz Veröffentlichung der Funktionsweise des Kryptosystems ohne die Kenntnis des verwendeten Schlüssels aus empfangenen Geheimtexten die ursprünglichen Klartexte nicht ableiten kann."


⇒ Je weniger Geheimnisse ein Kryptosystem braucht, desto robuster ist es!


Lernkontrolle


• https://learningapps.org/display?v=pdg5wrpz320


KRYPTOANALYSE

Krypto-Attacken

Kryptoanalytische Attacken

- Nur-Geheimtexte Attacke
- Known-plaintext Attacke
- Chosen-plaintext Attacke

Kryptoanalytische Strategien

- Vollständige Suche
- Wörterbuch Suche
- Statistische Methode
- Strukturanalyse bzw. reduzierte Suche

HYBRIDE SYSTEME & MESSAGE AUTHENTICATION CODES (MAC)

STÄRKEN UND SCHWÄCHEN DER CHIFFRIERSYSTEME

SYMMETRISCHE

- Schlüsselaustausch-Problem
- Schüsselinflation

Effizienter

ASYMMETRISCHE

- Kein Schlüsselaustausch
- Keine Schüsselinflation

Aufwendiger

Hybride System

Schlüssel der 3 Kryptographie-Verfahren

1. Einweg-Hashfunktionen

ohne Schlüssel.

2. Symmetrische Verfahren

ein geheimer Schlüssel

3. Asymmetrischen Verfahren

ein öffentlicher und ein privater Schlüssel

MESSAGE AUTHENTICATION CODE (MAC)

schlüsselabhängige Einweg-Hashfunktion:

- verschlüsselte
- Authentizität

Prüfsummen

& Integrität

Welche Ziele verfolgt die Kryptographie?

Vertraulichkeit Alice Bob

Zugriffsschutz: Nur dazu berechtigte Personen sollen in der Lage sein, die Daten oder die Nachricht zu lesen oder Informationen über ihren Inhalt zu erlangen.

Änderungsschutz: Die Daten müssen nachweislich vollständig und unverändert sein.

Authentizität

Fälschungsschutz: Der Urheber der Daten oder der Absender der Nachricht soll eindeutig identifizierbar sein, und seine Urheberschaft sollte nachprüfbar sein.

Verbindlichkeit

Nicht-abstreitbarkeit: Der Urheber der Daten oder Absender einer Nachricht soll nicht in der Lage sein, seine Urheberschaft zu bestreiten, d. h., sie sollte sich gegenüber Dritten nachweisen lassen.

DIGITALE SIGNATUREN

Welche Ziele verfolgt die Kryptographie?

Vertraulichkeit Alice Bob

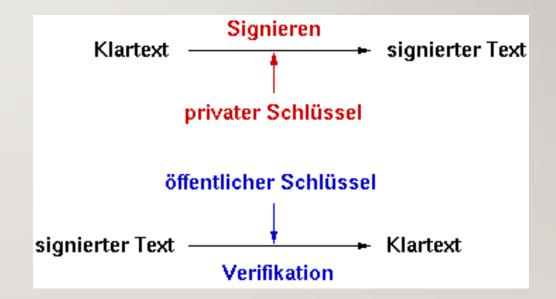
Zugriffsschutz: Nur dazu berechtigte Personen sollen in der Lage sein, die Daten oder die Nachricht zu lesen oder Informationen über ihren Inhalt zu erlangen.

Änderungsschutz: Die Daten müssen nachweislich vollständig und unverändert sein.

Authentizität

Fälschungsschutz: Der Urheber der Daten oder der Absender der Nachricht soll eindeutig identifizierbar sein, und seine Urheberschaft sollte nachprüfbar sein.

Verbindlichkeit


Nicht-abstreitbarkeit: Der Urheber der Daten oder Absender einer Nachricht soll nicht in der Lage sein, seine Urheberschaft zu bestreiten, d. h., sie sollte sich gegenüber Dritten nachweisen lassen.

PUBLIC-KEY KRYPTOGRAPHIE

ASYMMETRISCHE VERSCHLÜSSELUNG

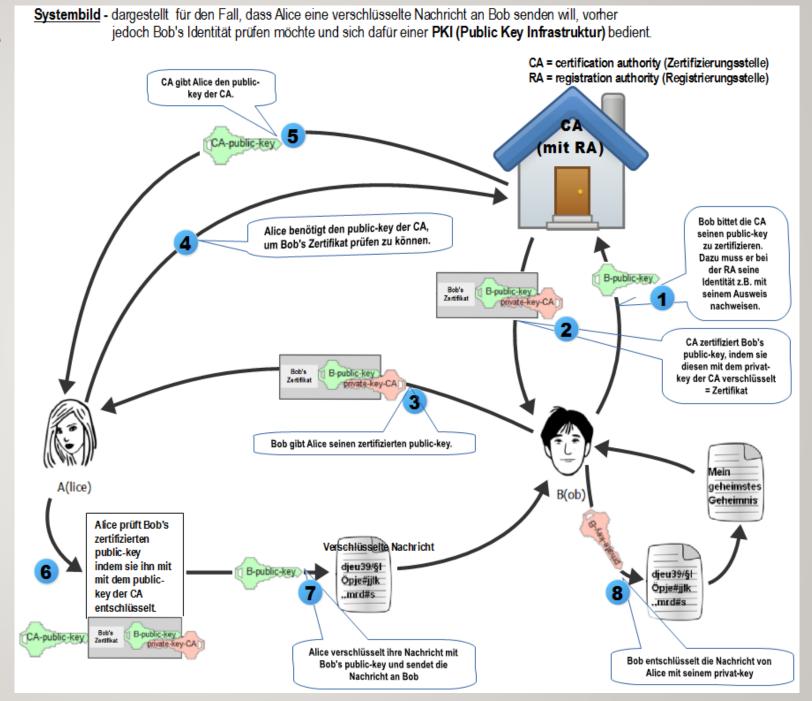
Klartext Chiffrierung Klartext Geheimtext öffentlicher Schlüssel privater Schlüssel Geheimtext Dechiffrierung Klartext

DIGITALE SIGNATUR

Man-in-the-middle-Angriff

Name 🔺 🔟 Andreas Schmitt andy-s@gmx.de (0x3206B235) pub.asc. Annika Meyer annika11@web.de (0x0041DACA) pub.asci | Jens Thiel jethi@arcor.de (0x2600EF2A) pub.asc ∬Jens Thiel jethi@arcor.de (0x66415600) pub.asc. 🔟 Katharina Schneider kati_95@t-online.de (0x66AA9851) pub.asci 🔟 Malte Baum malte.baum@gmx.net (0x341337A1) pub.asc. 🔟 Tanja Schuster taschu@web.de (0x4441FFCF) pub.asc

Analoge Zertifikate



DIGITALE SIGNATUREN & ZERTIFIKATE

Public-key infrastructure

Web of trust

Public-key infrastructure

Probleme mit Zertifikaten bzw. public-key-infrastructure

- Es kostet Zeit und Geld, ein Zertifikat von einer (weitgehend) anerkannten Zertifizierungsstelle zu bekommen.
- Die Überprüfung der Vertrauenswürdigkeit des Antragsstellers durch die Zertifizierungsstelle ist (notwendigerweise) lückenhaft.
- Auch Zertifizierungsstellen wurden schon gehackt.
- Auch korrekt zertifizierte Webseiten können gehackt sein.
- Zertifikate haben eine begrenzte Gültigkeitsdauer evtl. vergisst ein vertrauenswürdiger Anbieter das Zertifikat zu erneuern.
- Browser unterscheiden sich darin, welche Root-Zertifikate sie akzeptieren und wie schnell sie auf bekannt gewordene Zertifikat-Hacks reagieren.
- Die wenigsten Benutzer wissen genug von Zertifikaten, um mit einer allfälligen Browserwarnung angemessen umgehen zu können.

Web of trust

```
uid Sebastian Nerz <snerz@bvpk.org>
siq
     sig3
           449D222E 2008-11-28
                                                      [selfsig]
           022CE281 2009-08-30
                                                      Matthias Binninger <mail@matthias-binninger.de>
     siq3
siq
                                                      Benedikt Delker <BenediktDelker@web.de>
           62A25E4E 2009-08-30
sig
     sig3
siq
     siq3
           FE1DD1DF 2009-08-30
                                                      Alexander Scheurer <mail@aspepex.net>
           D58CB000 2009-08-30
                                                      david <david.maendlen@web.de>
     siq
siq
     sig3
           2C8C1429 2009-09-02
                                                      Axel Wagner <mail@merovius.de>
sig
           5FF25B4D 2010-04-19
                                                      branleb <br/>branleb@gmail.com>
siq
     siq
           14FE16C1 2010-06-01
                                                      Andreas Bittner <abittner@nobit.info>
     sig2
sig
                                                      Andreas Bittner <abittner@nobit.info>
           33742D65 2010-06-01
siq
     sig2
           0191D5ED 2010-12-27
                                                      Oliver Schrader <oliver.schrader@ymail.com>
sig
     siq2
```

Pretty Good Privacy (PGP)

Praxis

- https://
- GnuPG

ABSCHLUSS

Welche Ziele verfolgt die Kryptographie?

Vertraulichkeit Alice Bob

Zugriffsschutz: Nur dazu berechtigte Personen sollen in der Lage sein, die Daten oder die Nachricht zu lesen oder Informationen über ihren Inhalt zu erlangen.

Änderungsschutz: Die Daten müssen nachweislich vollständig und unverändert sein.

Authentizität

Fälschungsschutz: Der Urheber der Daten oder der Absender der Nachricht soll eindeutig identifizierbar sein, und seine Urheberschaft sollte nachprüfbar sein.

Verbindlichkeit

Nicht-abstreitbarkeit: Der Urheber der Daten oder Absender einer Nachricht soll nicht in der Lage sein, seine Urheberschaft zu bestreiten, d. h., sie sollte sich gegenüber Dritten nachweisen lassen.

Kryptographische Ziele und Verfahren (vereinfacht)

	Hash	MAC	Digitale Signatur
Integrität	Ja	Ja	Ja
Authentizität	-	Ja	Ja
Verbindlichkeit	-	-	Ja
Verschlüsselung	Keine	Symmetrisch	Asymmetrisch