Buchstaben, Zeichen und Text

Informatik Grundlagen Kantonsschule am Burggraben

Ivo Blöchliger

Alles Bits und Bytes

- Der Computer speichert nur Bits und Bytes
- Im Prinzip alles als natürliche Zahl interpretierbar.
 - z.B. ist ein Video eine einzige, riesige Zahl.
- Codierung:
 - Abmachung, wie die Bytes zu interpetieren sind.

Buchstaben

- Idee: Buchstaben (und andere Zeichen) nummerieren.
- Standard ASCII (7 Bits!)
- Was ergeben folgende Bytes, wenn man diese als ASCII-Zeichen interpretiert?

0x4f 0x6b 0x21 0x0a 0x36 0x2e 0x30

Suchen Sie dazu eine ASCII-Tabelle im Internet

0x4f 0x6b 0x21 0x0a 0x36 0x2e 0x30

0x4f 0x6b 0x21 0x0a 0x36 0x2e 0x30

ASCII-Zeichentabelle, hexadezimale Nummerierung																
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!	11	#	\$	%	&	1	()	*	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
5	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	[\]	^	_
6	`	a	b	С	d	е	f	g	h	i	j	k	I	m	n	0
7	р	q	r	S	t	u	V	W	Х	у	Z	{		}	~	DEL

Was ist mit ä, ö, ù?

- ASCII-Code nur lateinische Buchstaben ohne Akzente
- Nur 7 Bits, also nochmals 128 Zeichen mit achtem Bit!
- Früher (und Windows noch heute):
 - Viele mögliche Zeichentabelle, je nach Sprachregion
 - Bei uns gebräuchlich: Latin-1 (ISO8859-1), CP-1252
- Heute (bis auf Windows fast ausschliesslich):

Unicode: Jedem Zeichnen eine Nummer

Momentan über 100'000 Zeichen spezifiziert.

Unicode

- Weltweit jedem Zeichen seine Nummer
- Emojis, Akzente, Schriftrichtung, Ligaturen
 - Siehe Unicode-Video
- Codierung meist UTF-8:
 - Standard-ASCII mit 1 Byte
 - Andere Zeichen mit 2 oder mehr Bytes
 - Erstes Byte gibt auch an, aus wie vielen Bytes das Zeichen besteht.
 - Speichereffizient für Sprachen mit lateinischem Alphabet.

Text-Dateien (nicht Word!)

- Folge von Buchstaben (Bytes)
 - Und Steuerzeichen wie Zeilenumbrüche '\n', Tabulatoren '\t',...
- Universal lesbar und veränderbar, wenn in ASCII
 - Unicode in UTF-8 codiert heute ebenfalls.
- Keine Stil-Information (Schriftart, Grösse, Farbe, etc.)
- Beispiel: Python-Code, CSV-Dateien (Tabellarische Daten)

Und mit Stil?

- Variante 1
 Proprietäres Format, nur mit einem Programm lesbar
- Variante 2
 Markup: z.B. HTML, XML
 <h1>Titel</h1>Rot!

Office-Dokumente heute: zip-Archiv von XML-Dateien

Und in Python?

Und in Python?

```
>>> ord("A")
65
>>> chr(97)
'a'
>> s = chr(0x1f600)
>>> s
>> [bin(x) for x in s.encode("utf-8")]
['0b11110000', '0b10011111', '0b10011000', '0b10000000']
```