

1 Brückenkurs Lineare Algebra

$$\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} \in \mathbb{R}^3$$

1.1 Notationen und Begriffe

R Menge der reellen Zahlen.

 \mathbb{R}^n Menge aller *n*-dimensionalen Vektoren mit reellen Komponenten.

 $f: A \to B$ Eine Funktion bzw. Abbildung f, die den Elementen aus A Elemente in B zuordnet.

 \forall Für alle. Z.B. $x^2 > x \ \forall x > 1$.

 \exists Es existiert. Z.B. $\exists x \in \mathbb{R}$ so dass $x^2 = 2$.

2 Lineare Abbildungen in \mathbb{R}^n

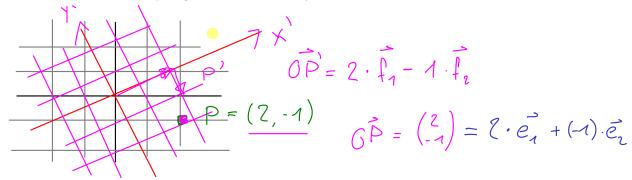
Die «klassische lineare Funktion» f(x) = mx + q ist nicht linear im Sinne der linearen Algebra (ausser für q = 0). Es wird darum von linearen Abbildungen gesprochen, um die Verwirrung klein zu halten.

2.1 Lineare Abbildungen der Ebene \mathbb{R}^2

Streckungen am Ursprung, Drehungen um den Ursprung und Scherungen, die den Ursprung auf sich selbst abbilden sind lineare Abbildungen der Ebene.

Eine solche Abbildung f ist vollständig definiert, wenn die Bilder $\vec{f_1} = \begin{pmatrix} f_{1,x} \\ f_{1,y} \end{pmatrix}$, $\vec{f_2} = \begin{pmatrix} f_{2,x} \\ f_{2,y} \end{pmatrix}$ der Einheitsvektoren $\vec{e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $\vec{e_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ bekannt sind. Es ist $\vec{f_1} = f(\vec{e_1})$ und $\vec{f_2} = f(\vec{e_2})$.

Es entsteht so ein neues, eventuell schiefes Koordinatensystem, in dem die Bildpunkte die gleichen Koordinaten wie die Urbildpunkte im ursprünglichen Koordinatensystem haben.



Ein allgemeiner Vektor $\vec{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix} = v_x \vec{e}_1 + v_y \vec{e}_2$ wird wie folgt abgebildet:

$$f(\vec{v}) = f(v_x \vec{e}_1 + v_y \vec{e}_2) = f(v_x \vec{e}_1) + f(v_y \vec{e}_2) = v_x f(\vec{e}_1) + v_y f(\vec{e}_2) = v_x \vec{f}_1 + v_y \vec{f}_2$$

Damit wurden die zwei Eigenschaften von linearen Abbildungen bereits benutzt:

Definition 2.1 Lineare Abbildung

Eine Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$ ist linear, wenn gilt:

$$f(\vec{u} + \vec{v}) = f(\vec{u}) + f(\vec{v})$$

$$f(\lambda \vec{v}) = \lambda f(\vec{v})$$

$$\forall \vec{v} \in \mathbb{R}^n, \ \forall \lambda \in \mathbb{R}$$

$$f(\vec{o}) \stackrel{?}{=} \vec{O} \qquad f(\vec{v}) = f(\vec{v} \cdot \vec{v}) = \vec{O} \cdot f(\vec{v}) = \vec{O}$$

$$f(\vec{v} - \vec{v}) = f(\vec{v} + (-1) \cdot \vec{v}) = f(\vec{v}) + (-1) \cdot f(\vec{v})$$

Aufgabe 2.1 Beweisen Sie aus den Eigenschaften einer linearen Abbildung dass $f(\vec{0}) = \vec{0}$.

$$M = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} - 1 \right)$$

Die Abbildung f kann mit einer **Matrix** (plural Matrizen) beschrieben werden:

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \\ f_{1,y} \\ f_{2,y} \end{pmatrix} \cdot \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

$$f(\vec{v}) = f\left(\begin{pmatrix} v_x \\ v_y \end{pmatrix}\right) = \begin{pmatrix} f_{1,x} \cdot v_x + f_{2,x} \cdot v_y \\ f_{1,y} \cdot v_x + f_{2,y} \cdot v_y \end{pmatrix}$$

Merke: Die Spalten einer Matrix entsprechen den Bildern der jeweiligen Einheitsvektoren.

Merke Matrix-Komponenten

Eine $n \times m$ -Matrix A hat n Zeilen und m Spalten. Die Komponenten der Matrix A werden mit $a_{i,j}$ notiert, wobei der erste Index i die Zeile und der zweite Index j die Spalte angibt. Man schreibt auch $A = (a_{i,j})$ oder ausführlicher

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,m} \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,n} & a_{n,3} & \cdots & a_{n,m} \end{pmatrix}$$

Matrix-Vektor Multiplikation

Eine $n \times n$ Matrix $M = (m_{i,j})$ wird mit einem n-dimensionalen Vektor $\vec{v} = (v_i)$ wie folgt multipliziert:

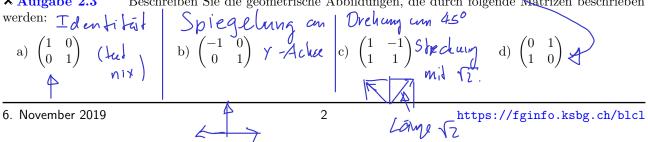
$$\underline{\vec{u}} = M \cdot \underline{\vec{v}}$$
 mit $u_i = \sum_{j=1}^n m_{i,j} \cdot v_j$

Visuell stellt man sich den Vektor hochgestellt neben der Matrix vor. Eine Komponente des Resultats erhält man dann als **Skalarprodukt** des Vektors mit der entsprechenden Zeile der Matrix:

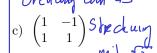
X Aufgabe 2.2 Bestimmen Sie die Abbildungssmatrizen folgender Abbildungen (falls es sich um eine lineare Abbildung handelt). Sonst erklären Sie, warum es sich nicht um eine lineare Abbildung handelt.

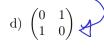
- a) Drehung um den Ursprung um 90°. $M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- b) Streckung am Ursprung mit Faktor 2. c) Spiegelung an der x-Achse. $M = \begin{pmatrix} 1 & C \\ O & -1 \end{pmatrix}$
- d) Spiegelung an der 45° Winkelhalbierenden durch den Ursprung. $M = \begin{pmatrix} c \\ 1 \end{pmatrix}$ e) Drehung um 180° um den Punkt (1,0). Nick! linear.
- f) Drehung um 30° um den Ursprung. M =
- g) Drehung um 45°, gefolgt von einer Spiegelung an der y-Achse, gefolgt von einer Streckung mit Faktor $\sqrt{2}$.

X Aufgabe 2.3 Beschreiben Sie die geometrische Abbildungen, die durch folgende Matrizen beschrieben



b)
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $Y - Achae$





6. November 2019

