

X Aufgabe 20.400 Leiten Sie $f(x) = x^2$ ab. Vergleichen Sie mit der Tangente an die Normalparabel im Punkt (p, p^2) : $t(x) = 2px - p^2$.

***Aufgabe 20.401** Leiten Sie $f(x) = x^n$ ab.

Merke Ableitung einer Potenzfunktion

Für $p \in \mathbb{R}^*$ und $f(x) = x^p$ gilt:

$$f'(x) = (x^p)' = px^{p-1}$$

Der Beweis für negative ganzzahlige Exponenten kann wie oben geführt werden. Für reelle Exponenten wird der Beweis später via die Exponentialfunktion zur Basis e und dem natürlichen Logarithmus mit der Kettenregel geführt werden.

20.3.1 Ableitung von Exponentialfunktionen

X Aufgabe **20.402** Sei $f(x) = 2^x$.

- a) Zeigen Sie, dass $f'(x) = f(x) \cdot f'(0)$. Leiten Sie dazu mit dem Differenzenquotienten ab.
- b) Überzeugen Sie sich, dass das obige Resultat für beliebige Basen $a \in \mathbb{R}^+$ gilt.
- c) Für welche Basis gilt f'(0) = 1 (und damit f'(x) = f(x))? Vorgehen: Setzen Sie den Differenzenquotienten (ohne Grenzwert) gleich 1 und lösen Sie nach a auf. Bestimmen Sie dann näherungsweise den Grenzwert wenn $h \to 0$.

Definition 20.53 Eulersche Zahl e

Man definiert Eulersche Zahl

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.718281828459045.$$

Diese Zahl bildet die Basis des natürlichen Logarithmus und ist eine der wichtigsten mathematischen Konstanten.