

Lösung zu Aufgabe 20.413 ex-kettenregel-mit-linearer-approximation-herleiten

Es gilt $f(x_0 + h) \approx f(x_0) + f'(x_0)h$ und $g(x_0 + h) \approx g(x_0) + g'(x_0)h$. Es gilt also:

$$k(x_0 + h) = f(g(x_0 + h)) \approx f\left(g(x_0) + \underbrace{h \cdot g'(x_0)}_{h_2}\right) \approx f(g(x_0)) + h_2 f'(g(x_0)) = f(g(x_0)) + h \cdot g'(x_0) f'(g(x_0))$$

Der erste Term ist $k(x_0)$, der zweite ist also $h \cdot k'(x_0)$. Wir schliessen daraus

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

Intuitiv kann man die Sache wie folgt verstehen: Das Argument in f ändert sich nicht mit Änderungsrate 1 (wie wenn dort nur x stehen würde) sondern mit Änderungsrate g'(x). Darum wird die Änderungsrate noch damit multipliziert. Man spricht von innerer Ableitung.

Lösung zu Aufgabe 20.414 ex-kettenregel-anwenden

Die Hauptschwierigkeit besteht darin, die äussere und innere Funktion zu bestimmen. Wir schreiben f(x) = g(h(x)):

- a) $g(x) = e^x$ und $h(x) = x^2$. $g'(x) = e^x$ und h'(x) = 2x. Und damit $f'(x) = g'(h(x)) \cdot h'(x) = e^{x^2} \cdot 2x$.
- b) $g(x) = x^2$, $h(x) = e^x$, g'(x) = 2x, $h'(x) = e^x$. Und damit $f'(x) = g'(h(x)) \cdot h'(x) = 2e^x \cdot e^x = 2e^{2x}$.
- c) $g(x) = \ln(x)$, $h(x) = x^7$, $g'(x) = \frac{1}{x}$, $h'(x) = 7x^6$. Und damit $f'(x) = g'(h(x)) \cdot h'(x) = \frac{1}{x^7} \cdot 7x^6 = \frac{7}{x}$. Hätte man umgeformt als $f(x) = 7\ln(x)$ wäre die Sache etwas einfacher gewesen.
- d) $g(x) = \ln(x)$, $h(x) = e^x$, $g'(x) = \frac{1}{x}$, $h'(x) = e^x$. Und damit $f'(x) = g'(h(x)) \cdot h'(x) = \frac{1}{e^x} \cdot e^x = 1$. Hätte man umgeformt als f(x) = x wäre die Sache sofort klar.
- e) $f'(x) = g'(h(k(x))) \cdot (h(k(x)))' = g'(h(k(x))) \cdot h'(k(x)) \cdot k'(x)$
- f) $g(x) = e^x$, $h(x) = p \ln(x)$, $g'(x) = e^x$, $h'(x) = \frac{p}{x}$ und damit $f'(x) = g'(h(x)) \cdot h'(x) = e^{p \ln(x)} \cdot \frac{p}{x}$.
- g) $g(x) = x^4$, $h(x) = \ln(x)$, $g'(x) = 4x^3$, $h'(x) = \frac{1}{x}$ und damit $f'(x) = g'(h(x)) \cdot h'(x) = 4(\ln(x))^3 \cdot \frac{1}{x}$
- h) $f(x) = (k(x))^-$ 1. Äussere Funktion $g(x) = x^{-1}$, innere Funktion h(x) = k(x), $g'(x) = -x^{-2}$, h'(x) = k'(x) und damit $f'(x) = g'(h(x)) \cdot h'(x) = -(k(x))^{-2} \cdot k'(x) = -\frac{k'(x)}{(k(x))^2}$

Lösung zu Aufgabe 20.417 ex-produktregel-mit-linearer-approximation-herleiten

Es gilt $f(x+h) \approx f(x) + f'(x)h$ und $g(x+h) \approx g(x) + g'(x)h$. Das Produkt ist

$$p(x+h) = f(x+h) \cdot g(x+h) \approx (f(x) + f'(x)h) \cdot (g(x) + g'(x)h) = f(x)g(x) + h(f(x)g'(x) + f'(x)g(x)) + h^2f'(x)g'(x)$$

Der erste Teil ist p(x), der zweite Teil ist eine lineare Approximation von p, also p'(x) = f(x)g'(x) + f'(x)g(x). Der letzte Teil ist für sehr kleine h vernachlässigbar.

Lösung zu Aufgabe 20.418 ex-produktregel-anwenden

a)
$$f'(x) = (x^{42} \cdot \ln(x))' = 42x^{41} \cdot \ln(x) + x^{42} \cdot \frac{1}{x} = x^{41} \cdot (1 + 42\ln(x))$$

b)
$$f'(x) = (\sqrt{x} \cdot e^x)' = \sqrt{x}e^x + \frac{1}{2\sqrt{x}} \cdot e^x = e^x \cdot \frac{2x+1}{2\sqrt{x}}$$

c)
$$f'(x) = (2^x \cdot x^{-2})' = \ln(2) \cdot 2^x \cdot x^{-2} + 2^x \cdot (-2) \cdot x^{-3}$$

d)
$$f'(x) = (x^5 \cdot x^4)' = 5x^4 \cdot x^4 + x^5 \cdot 4x^3 = 9x^8$$
 Hier hätte man besser zuerst umgeformt.