

Beweisen Sie mit der Definition des Logarithmus, dass $\log_b(b^x) = x$ und $b^{\log_b(x)} = x$. **X** Aufgabe 374

0

X Aufgabe 375 Berechnen Sie von Hand mit der Idee $\log_b(b^a) = a$.

a) $\log_2(32)$

b) $\log_3\left(\frac{1}{81}\right)$

c) $\log_5(\sqrt{5})$

d) $\log_9(27)$

e) $\log_2\left(\frac{1}{\sqrt[3]{16}}\right)$

f) $\log_7(1)$

X Aufgabe 376 Berechnen Sie von Hand mit der Idee $b^{\log_b(c)} = c$.

a) $3^{\log_3(7)}$

b) $9^{\log_3(\sqrt{5})}$

c) $2^{-\log_8(125)}$

X Aufgabe 377 Zeichnen Sie die Graphen folgender Funktionen.

- a) $a(x) = \log_2(x)$
- b) $b(x) = \log_{10}(x)$ c) $c(x) = \log_{\frac{1}{2}}(x)$
- d) $d(x) = \log_{\frac{1}{10}}(x)$

Logarithmusgesetze 19.3

X Aufgabe 378 Richtig oder falsch? Finden Sie Gegenbeispiele oder gute Argumente für die Richtigkeit:

- a) $\log_b(x+y) = \log_b(x) + \log_b(y)$
- b) $\log_b(x \cdot y) = \log_b(x) \cdot \log_b(y)$
- c) $\log_b(x y) = \log_b(x) \log_b(y)$
- d) $\log_b(\sqrt{x}) = \sqrt{\log_b(x)}$
- e) $\log_b(x \cdot y) = \log_b(x) + \log_b(y)$
- f) $\log_b\left(\frac{1}{x}\right) = \frac{1}{\log_b(x)}$
- g) $\log_b(x^y) = (\log_b(x))^y$
- h) $\log_b\left(\frac{x}{y}\right) = \log_b(x) \log_b(y)$
- i) $\log_{\frac{1}{b}}(x) = -\log_b(x)$
- j) $\log_b\left(\frac{x}{y}\right) = \frac{\log_b(x)}{\log_b(y)}$

X Aufgabe 379 Beweisen Sie, dass $\log_b(x \cdot y) = \log_b(x) + \log_b(y)$ (für $b, x, y \in \mathbb{R}^+, b \neq 1$). Vorgehen: Schreiben Sie x und y als Potenz von b und setzen Sie ein:

Ø

X Aufgabe 380 Beweisen Sie, dass $\log_b(x^y) = y \cdot \log_b(x)$ (für $b, x \in \mathbb{R}^+, b \neq 1, y \in \mathbb{R}$). Vorgehen: Schreiben Sie x als Potenz von b und setzen Sie ein:

0