

c) r: Stelle in $[0,\pi]$, so dass der Punkt (r,0) die linke untere Ecke des Rechtecks ist.

Umfang des Rechtecks U = 2a + 2b

Nebenbedingungen: $a = (\pi - 2r \text{ und } b = 3\sin(r).$

Zielfunktion: $U(r) = 2 \cdot 3\sin(r) + 2(\pi - 2r) = 6\sin(r) + 2\pi - 4r$.

Extremum: $U'(x) = 6\cos(r) - 4 = 0 \Rightarrow u \approx 0.841$ Das Rechteck hat die linke untere Ecke $\approx (0.841, 0)$ und den maximalen Inhalt ≈ 5.07 .

d) Gesuchter Punkt auf der Parabel: Q(x, y).

Entfernung von Q zu P: $d = \sqrt{(x-6)^2 + (y-0)^2}$.

Nebenbedingung: $y = \frac{1}{2}x^2$, weil Q auf der Parabel liegt.

Zielfunktion:
$$d(x) = \sqrt{(x-6)^2 + \left(\frac{1}{2}x^2\right)^2} = \sqrt{\frac{1}{4}x^4 + x^2 - 12x + 36}$$
.

Der Einfachheit halber bestimmen wir das Maximum der Funktion $e(x) = (d(x))^2$.

Extremum: $e'(x) = 0 \Rightarrow x^3 + 2x - 12 = 0 \Rightarrow x = 2$.

Der Punkt Q(2,2) hat von P den kleinsten Abstand, und zwar $d=\sqrt{20}$.