

1.4.3 Hoch Null

Wie soll a^0 definiert werden (für $a \in \mathbb{N}^+$)? Die obigen Potenzgesetze sollen auch weiterhin gültig bleiben (Permanenzprinzip).

Bestimmen Sie mit Hilfe des ersten Potenzgesetz oben, wie a^0 zu definieren ist. Aufgabe 1.6

 $\mathbf{Hinweis:}\ 0^0$ ist nicht eindeutig definierbar. In mehreren Fällen macht es aber aus praktischen und ästhetischen Gründen Sinn, $0^0 = 1$ zu definieren.

1.4.4 Potenzen zum Auswendig lernen

 n^2 bis n = 20, n^3 bis n = 5, 3^e bis e = 5 und 2^e bis e = 10.

Aufgabe 1.7 Erstellen Sie eine Tabelle mit allen auswendig zu lernenden Potenzen.

Division und \mathbb{Q} 1.5

Die Division z:n mit $z,n\in\mathbb{N}$ und n>0 kann auf dem Zahlenstrahl sehr einfach definiert werden: Man teilt die Strecke von 0 bis z in n gleich grosse Strecken. Der erste Teilpunkt rechts von 0 entspricht dem Quotienten (Resultat der Division).

Ausser wenn n ein Teiler von z ist, ist der Quotient keine natürliche Zahl, sondern eine **rationale Zahl** (Bruchzahl).

Definition 1.5 Menge der rationalen Zahlen \mathbb{Q}

Die Menge der rationalen Zahlen ist definiert als

$$\mathbb{Q} = \left\{ \frac{z}{n} \mid z \in \mathbb{Z} \text{ und } n \in \mathbb{N} \text{ mit } n > 0 \right\}$$

In einem Bruch $\frac{z}{n}$ wird z der ${\bf Z\ddot{a}hler}$ und n der ${\bf Nenner}$ genannt.

Für die Addition und Subtraktion kann die geometrische Definition auf dem Zahlenstrahl sehr einfach auf $\mathbb Q$ ausgedehnt werden. Algebraisch müssen Brüche aber erst gleichnamig (gleiche Nenner) gemacht werden, bevor addiert werden kann.

Die Definition der Multiplikation in $\mathbb Q$ lässt sich nicht ohne weiteres aus jener in $\mathbb N$ übertragen. Man zeigt erst in \mathbb{N} dass $a \cdot (b : c) = (a \cdot b) : c$ und fordert mit dem Permanenzprinzip die Gültigkeit in \mathbb{Q} .

Merke Multiplikation in Q

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

«Bruch mal Bruch, wie macht's der Kenner? Zähler mal Zähler, Nenner mal Nenner». Und unbedingt vor dem Multiplizieren auch übers Kreuz kürzen!

X Aufgabe 1.8 Berechnen Sie:

- a) $\frac{24}{35} \cdot \frac{63}{16}$ b) $\frac{14}{27} \cdot \frac{63}{49}$ c) $\frac{48}{121} \cdot \frac{77}{32}$ d) $\frac{169}{39} \cdot \frac{28}{91} \cdot \frac{27}{6}$