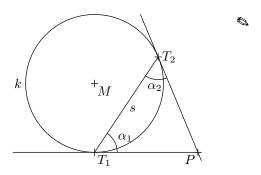


**Aufgabe 4.33 In einem allgemeinen Dreieck $\triangle ABC$ seien H_a und H_b die Höhenfusspunkte der Höhen h_a und h_b auf den Seiten a, bzw. b. Zeigen Sie, dass das Dreieck $\triangle M_{AB}H_aH_b$ gleichschenklig ist.

4.6.2 Sehnen-Tangenten-Winkel



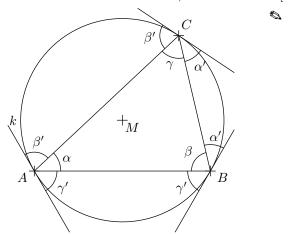
Merke

Sehnen-Tangenten-Winkel über gleich langen Sehnen sind gleich gross.

X Aufgabe 4.34 Beweisen Sie mit Hilfe der Skizze oben, dass der **Zentriwinkel** $\triangleleft T_1MT_2 = 2\alpha$.

4.6.3 Peripherie-Winkel

Ein Peripheriewinkel ist ein Winkel mit Scheitel auf der Kreislinie und Schenkeln durch die Endpunkte einer Kreissehne. Z.B. der Winkel γ über der Sehne [AB] in der folgenden Skizze:



Da keine Annahmen über die Wahl der Punkte A, B, C auf dem Kreis k getroffen wurden, ist der Beweis allgemein gültig. Insbesondere gilt der Beweis, wenn [BC] fix ist und A auf dem Kreis wandert. Die Winkel α' ändern sich dabei nicht, also bleibt auch der Winkel α immer gleich gross.

Merke

Peripheriewinkel über gleich langen Sehnen sind gleich gross.

Und umgekehrt gilt auch, dass der geometrische Ort aller Punkte C, die über einer Strecke [AB] einen Winkel γ bilden, einem Kreisbogenpaar über [AB], dem sogenannten **Ortsbogenpaar** entspricht.