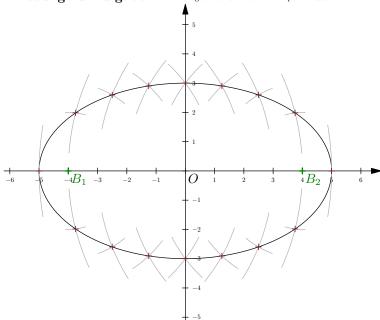


- **2 Lösungen** wenn $\overline{kg} < 2r$ und $g \cap k = \emptyset$.
- **3 Lösungen** wenn g Tangente an k und $r_2 > r_1$.
- **4 Lösungen** wenn g Tangente an k ist und $r_2 \leq r_1$, oder wenn $\overline{Mg} < r_1$ und $r_2 > r_1$.
- **5 Lösungen** wenn $\overline{Mg} = r_1 r_2$ (und damit $r_1 > r_2$).
- 7 Lösungen wenn $r_2 < 2r_1$ und $\overline{gM} + r_2 = r_1$.
- **8 Lösungen** wenn $r_2 < 2r_1$ und $\overline{gM} + r_2 < r_1$.
- 6 Lösungen sonst.

Lösung zu Aufgabe 4.13 ex-geometrische-oerter-parabel-entdecken



Für alle halbzahligen d wird folgende Konstruktion durchgeführt:

- 1. Parallele zu g im Abstand $d \rightarrow p$
- 2. $k(B,d) \cap p$ $\rightarrow P_1, P_2$ (ausser für d=1 nur ein Punkt

Die entstehende Kurve (eine Parabel) ist rund und hat nirgends einen Knick!

Lösung zu Aufgabe 4.14 ex-geometrische-oerter-ellipse-entdecken

Für alle ganzzahligen d von 1 bis 9 wird folgende Konstruktion durchgeführt:

1. $k(B_1,d) \cap k(B_2,10-d) \rightarrow 2$ Punkte (ausser für d=1 und d=9)

Die entstehende Kurve (eine Ellipse) ist rund und hat nirgends einen Knick!