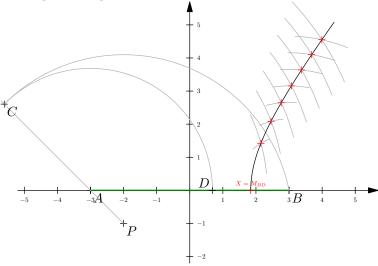


Schlägt man bei B_1 und B_2 zwei Nägel ein und legt eine Fadenschlaufe der Länge $10 + \overline{B_1B_2} = 10 + 8 = 18$ um die Nägel, kann mit einem Stift, der die Schlaufe spannt, die Ellipse gezeichnet werden.

Lösung zu Aufgabe 4.15 ex-geometrische-oerter-hyperbel-entdecken



Zuerst wird der Punkt D auf [AB] konstruiert, der via A gleich weit von P entfernt ist, wie der Punkt B. Der Mittelpunkt von D und B ist dann X:

- 1. $k(P, \overline{PB}) \cap [PA \rightarrow C]$
- 2. $k(A, \overline{AC}) \cap [AB] \rightarrow D$
- 3. $M_{BD} \rightarrow X$

Für alle halbzahligen d von 0.5 bis 4 wird folgende Konstruktion durchgeführt:

1. $k(A, d + \overline{AX}) \cap k(B, d + \overline{BX}) \rightarrow 1$ Punkt oberhalb AB

Die entstehende Kurve (ein halber Hyperbelast) ist rund und hat nirgends einen Knick! Die Tangente an die Hyperbel in X ist vertikal.

Man beachte dass für alle Punkte P auf der Hyperbel folgendes gilt: $\overline{AP} - \overline{BP} = \overline{AX} - \overline{BX}$.

$L\"{o}sung~zu~Aufgabe~4.16~{}_{\rm ex\text{-}geometrische\text{-}oerter\text{-}ellipse1}$

Damit überhaupt ein Dreieck gezeichnet werden kann muss $\ell \geq 2\overline{AB}$ sein. Ansonsten ist der geometrische Ort die leere Menge \varnothing .

Es gilt also $\overline{AB} + \overline{BC} + \overline{CA} = \ell$, bzw. $\overline{AC} + \overline{BC} = \ell - \overline{AB}$ und damit ist der geometrische Ort aller Punkte C eine Ellipse mit Brennpunkten A und B und Abstandssumme $\ell - \overline{AB}$.

Lösung zu Aufgabe 4.17 ex-geometrische-oerter-parabel1

- a) Da g Tangente an die Kreise ist und der Berührungspunkt P auf g ist, ist der geometrische Ort die Rechtwinklige zu g durch P.
- b) Für die Kreiszentren Z gilt: $\overline{ZP} = \overline{Zg}$. Damit ist der gesuchte geometrische Ort eine Parabel mit Brennpunkt P und Leitlinie g.

Lösung zu Aufgabe 4.18 ex-geometrische-oerter-parabel2

Zuerst wird die Symmetrieachse a der Parablel konstruiert. Es gilt: $B \in a$. Danach wird ein Punkt $Q \in p$ gewählt und die Bedingung $\overline{Q\ell} = \overline{QB}$ genutzt.