

Definition 13.6 Bogenmass

Ein Winkel α im Bogenmass ist die Länge des entsprechenden Bogens auf dem Einheitskreis von (1,0) bis P_{α} (in positivem Drehsinn), gemessen in Vielfachen der Einheitslänge.

Ein Winkel im Bogenmass ist also eine Zahl (ohne Masseinheit).

Gelegentlich schreibt man die Einheit **rad** (gelesen «Radiant») dazu, um eine solche Zahl als Winkel im Bogenmass zu kennzeichnen.

Der Name Radiant kommt daher, dass die Länge des Kreisbogens in Vielfachen des Radius angegeben wird.

 $\mbox{$\bigstar$}$ Aufgabe 13.7 Vervollständigen Sie folgende Tabelle mit exakten Werten und bestimmen Sie die beiden Umrechnungsfunktionen g(r) von Radiant in Grad und r(g) von Grad in Radiant!

Grad	0°	360°	180°	90°	-90°			225°	g(r) =
Radiant	0					$\frac{\pi}{4}$	$\frac{2\pi}{3}$		r(g) =

13.2 Trigonometrie im rechtwinkligen Dreieck

Der Begriff «Trigonometrie» kommt aus dem Griechischen und bedeutet Dreiecksvermessung (τριγωνον trígonon «Dreieck» und μετρον métron «Mass»). ¹

**Aufgabe 13.8 In dieser Aufgabe sind zwei Skizzen nebeneinander zu erstellen, ein Dreieck und ein Einheitskreis.

- Zeichnen Sie ein rechtwinkliges Dreieck $\triangle GHA$ mit Winkel $\gamma \approx 25^{\circ}$ bei G und rechtem Winkel bei H. Beschriften Sie den Winkel γ und die Seiten g, h, und a.
- Zeichnen Sie daneben einen Einheitskreis mit dem Punkt P_{γ} (gleicher Winkel γ wie in Ihrem Dreieck).
- Zeichnen Sie das Stützdreieck unter der Strecke OP_{γ} .
- Begründen Sie, warum das Stützdreieck und Ihr Dreieck $\triangle GHA$ ähnlich sind.
- Beschriften Sie die Längen der Stützdreiecksseiten.
- Geben Sie mit Hilfe des Stützdreiecks die drei Seitenverhältnisse $g:h,\ a:h$ und g:a an.

Merke Sinus und Cosinus im rechtwinkligen Dreieck

Sei δ ein Winkel (\neq 90°) in einem rechtwinkligen Dreieck. Die diesem Winkel *an*liegende Kathete heisst **Ankathete zu** δ , die dem Winkel *gegen*überliegende Kathete heisst **Gegenkathete zu** δ . Es gilt:

$$\sin(\delta) = \cos(\delta) = \tan(\delta) =$$

Dazu gibt es folgende Eselsbrücke²: «GAGA HühnerHof AG», der in folgender Tabelle zusammengefasst wird:

\sin	\cos	tan	\cot	
G	A	G	A	
Н	Н	A	G	

Zum Beispiel ist der Cosinus der Quotient Ankathete durch Hypotenuse. Hinweis: cot steht für Cotangens und ist für fast alle Winkel einfach der Kehrwert des Tangens.

 $^{^{1}}$ https://de.wikipedia.org/wiki/Trigonometrie

²https://de.wikipedia.org/wiki/Merkspruch