
Solving Quantitative
Problems with R

Data and Introductory Programming

Session 2

R Data Structures and Objects

September 25, 2018

R Language Fundamentals

R Datatypes

R Objects
Vectors
Matrices
Lists
Data Frames
Factors

Conversion

Overview

R Language Fundamentals

R Datatypes

R Objects
Vectors
Matrices
Lists
Data Frames
Factors

Conversion

Thinking R: What R is about
The basic element in R is a vector (not a scalar!). A vector is set of
values that are all of the same type.

2

[1] 2

matrix (2:9,2,4)

[,1] [,2] [,3] [,4]

[1,] 2 4 6 8

[2,] 3 5 7 9

"a"

[1] "a"

letters [1:3]

[1] "a" "b" "c"

Overview

R Language Fundamentals

R Datatypes

R Objects
Vectors
Matrices
Lists
Data Frames
Factors

Conversion

Datatypes

The existing datatypes are
I integer: 1, 2, 3, ..
I numeric: 2.12, π, 4.0
I character: “joe”, “ strawberry fields”
I complex: 4+3i
I logical: TRUE or FALSE (abbreviated as T or F)

Integers are a subclass of numeric, you don’t need to convert
explicitly before using them together.

For each of these datatypes there is a set of operations. Since the
basic element is a vector you also need to think of this operations as
operations on vectors (or list of elements).

Operation on Numerical Vectors
A non-exhaustive list of operations on vectors is given below.

Description

x+y Addition (elementwise) of x and y
x-y Substraction (elementwise) of x and y
x*y Multiplication (elementwise) of x and y
x/y Division (elementwise) of x and y
x<y Comparison (elementwise) (may also be >, ≥

,≤ ,==, !=)
sum(x) Sum of all elements in x
mean(x) Mean of all elements in x
prod(x) Product of all elements of x
diff(x) Differences of x , i.e., x2 − x1, x3 − x2,..

Where == is the operator for equal and != for unequal. However, some
caution is needed when doing comparisons on non-integer values (cf.
Session 1)

sqrt (2)^2 == 2

[1] FALSE

sqrt (2)^2 -2

[1] 4.440892e-16

Operations on character vectors
I Concatenation: To paste together two character objects / strings:

paste(x,y)
I paste(x, y, sep = sepstring) adds a sepstring between x and y, by

default sep = " ".
I paste(x, collapse = collapsestring) collapses the vector of characters

x into a single character with elements separated by collapsestring

Examples

paste("A","B")

[1] "A B"

x <- c("a","b","c")

y <- c("A","B")

paste(x,y, sep = "--")

[1] "a--A" "b--B" "c--A"

paste(y,x, sep ="")

[1] "Aa" "Bb" "Ac"

paste(x)

[1] "a" "b" "c"

paste(x,collapse="<->")

[1] "a<->b<->c"

Operation on Logical Vectors

A non-exhaustive list of operations on logical vectors is given below.

Description

x & y Logical and (elementwise) of x and y
x | y Logical or (elementwise) of x and y
!x Logical negation (elementwise) of x
all(x) TRUE if all elements of x are TRUE
any(x) TRUE if any element of x is TRUE

You may also use all the operations defined for numerical vectors on
logical vectors: TRUE is considered as 1 and FALSE as 0.

Boolean Algebra
Table for logical AND

& TRUE FALSE
TRUE TRUE FALSE
FALSE FALSE FALSE

Table for logical OR

| TRUE FALSE
TRUE TRUE TRUE
FALSE TRUE FALSE

Table for logical negation

x !x
TRUE FALSE
FALSE TRUE

Like this we may for instance conclude that if A and B are two logical
statements that

!A&!B ⇔!(A|B)

Overview

R Language Fundamentals

R Datatypes

R Objects
Vectors
Matrices
Lists
Data Frames
Factors

Conversion

Overview

R Language Fundamentals

R Datatypes

R Objects
Vectors
Matrices
Lists
Data Frames
Factors

Conversion

Creating Vectors – Logicals
To create vectors the usual way is to invoke the concatenation operator c.
Logical vectors

x <- c(TRUE , FALSE , TRUE , FALSE)

x

[1] TRUE FALSE TRUE FALSE

y <- c(T,F,T,F)

y

[1] TRUE FALSE TRUE FALSE

str(y)

logi [1:4] TRUE FALSE TRUE FALSE

summary(y)

Mode FALSE TRUE

logical 2 2

Creating Vectors – Logicals
A helpful way is also to use the repeat operator rep:

x <- rep(c(TRUE , FALSE), times = 4)

x

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

y <- rep(c(TRUE , FALSE), each = 4)

y

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

Creating Vectors – Numerical
Just as with logical vectors you can create numerical vectors with c to
concatenate several values

x1 <- c(-10, 0, 1, 12, 12.1, pi, 3)

x1

[1] -10.000000 0.000000 1.000000 12.000000 12.100000

3.141593 3.000000

Alternatively, you can create ranges:

x2 <- 1:10

x2

[1] 1 2 3 4 5 6 7 8 9 10

x3 <- -10:10

x3

[1] -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

5 6 7 8 9 10

Creating Vectors – Numerical Sequence Operator
For more control over the behavior of ranges you may use the sequence
operator seq:

x4 <- seq(-10, 10, by = 2)

x4

[1] -10 -8 -6 -4 -2 0 2 4 6 8 10

or alternatively by specifying the number of elements in the range

x5 <- seq(-10, 10, length.out =7)

x5

[1] -10.000000 -6.666667 -3.333333 0.000000 3.333333

6.666667 10.000000

Creating Vectors – Character Vectors & Complex
Vectors

Just as with logical and numerical vectors you may get vectors of characters
by using c as follow

names <- c("John", "Joe", "Paul")

names

[1] "John" "Joe" "Paul"

or

names <- rep(c("John", "Joe"), each = 3)

names

[1] "John" "John" "John" "Joe" "Joe" "Joe"

Although less frequently used R can handle complex numbers

mycmplx <- c(0 + 1i, 2 + 2i, 4, 0 +1i)

mycmplx

[1] 0+1i 2+2i 4+0i 0+1i

mycmplx ^2

[1] -1+0i 0+8i 16+0i -1+0i

If you mix elements of different modes you’ll obtain a character vector that
contains only elements of the “covering mode”:

mix1 <- c("Paul", TRUE , F, 12, 2.83)

mix1

[1] "Paul" "TRUE" "FALSE" "12" "2.83"

str(mix1)

chr [1:5] "Paul" "TRUE" "FALSE" "12" "2.83"

However, note what happens if you only mix numerical values with logical
values

mix2 <- c(TRUE , TRUE , 2, -27, 2.3, FALSE , 0, 1, 17, pi)

mix2

[1] 1.000000 1.000000 2.000000 -27.000000 2.300000

0.000000 0.000000 1.000000 17.000000 3.141593

str(mix2)

num [1:10] 1 1 2 -27 2.3 ...

Operations on (numerical) Vectors
R carries out operations on vectors element wise (unlike Matlab).

x <- c(1, 2, 3, 4, 5, 6)

y <- rep(c(2, 3), times = 3)

x

[1] 1 2 3 4 5 6

y

[1] 2 3 2 3 2 3

x * y # multiply

[1] 2 6 6 12 10 18

x + y # add

[1] 3 5 5 7 7 9

x^y # exponentiate

[1] 1 8 9 64 25 216

x %/% y # integer division

[1] 0 0 1 1 2 2

x %% y # modulo aka remainder

[1] 1 2 1 1 1 0

Operations on Vectors – Recycling
And important concept in this context is the so called “recycling” behavior.
Whenever a shorter vector in used in an operation with a longer vector the
elements of the shorter vector are recycled until its length matches the length
of the longer vector.

x <- rep(1,10)

x

[1] 1 1 1 1 1 1 1 1 1 1

y <- 1:4

y

[1] 1 2 3 4

x * y

Warning in x * y: longer object length is not a multiple of shorter

object length

[1] 1 2 3 4 1 2 3 4 1 2

x + y

Warning in x + y: longer object length is not a multiple of shorter

object length

[1] 2 3 4 5 2 3 4 5 2 3

Accessing Elements of a vector
Elements of a vector can either be accessed by an integer vector or by a
logical vector.

x <- c(1,12,3,12)

x[c(1,2)]

[1] 1 12

x[2:3]

[1] 12 3

x[c(TRUE ,TRUE , FALSE ,FALSE)]

[1] 1 12

x[c(TRUE ,FALSE)]##Recycling!

[1] 1 3

Suppose now you want all elements that are smaller than 4:

relevantindices <- x < 4

relevantindices

[1] TRUE FALSE TRUE FALSE

x[relevantindices]

[1] 1 3

Vector Operations
Let x and y be two vectors

Command Effect

union(x, y) x ∪ y
intersect(x, y) x ∩ y
setdiff(x,y) x \ y
x %in% y A vector of length of x consisting of booleans in-

dicating whether each element is part of y
unique(x) Unique values of x
sort(x) A sorted version of x (see ?sort for options, the

sorting obviously depends on the type of x)

x <- c(1, 2, 5, 18)

y <- c(2, 3, 6, 8, 9, 10, 11, 12, 18)

setdiff(x, y)

[1] 1 5

setdiff(y, x)

[1] 3 6 8 9 10 11 12

x %in% y

[1] FALSE TRUE FALSE TRUE

Constructing vectors from vectors
Quite often it is also helpful to remove elements from a vector. This can be
achieved by using negative indices, i.e.

x <- c(1, 2, 5, 18)

x[-c(1,3)]

[1] 2 18

Helpful in this context is the which function which returns the indices of
values that are true in a logical vector. An alternative way to construct
setdiff(x,y) would thus be

y <- c(2, 3, 6, 8, 9, 10, 11, 12, 18)

xisiny <- x %in% y

xisiny

[1] FALSE TRUE FALSE TRUE

indices <- which(xisiny)

indices

[1] 2 4

x[-indices]

[1] 1 5

Overview

R Language Fundamentals

R Datatypes

R Objects
Vectors
Matrices
Lists
Data Frames
Factors

Conversion

Matrices
Matrices in R are essentially 2-dimensional vectors which may consist of a
single type only. Suppose you want to have

A =

(
2 9 3
1 3 7

)
which you could get in R as

A <- matrix(c(2,1,9,3,3,7),nrow=2,ncol =3)

A

[,1] [,2] [,3]

[1,] 2 9 3

[2,] 1 3 7

str(A)

num [1:2, 1:3] 2 1 9 3 3 7

Matrices
Alternatively, you could also have a matrix of characters, i.e.

B =

(
John Joe Jim
Jane Julia Jackie

)
which would translate to the following R code

B <- matrix(c("John","Jane","Joe","Julia","Jim","Jackie"),nrow=2,

ncol =3)

B

[,1] [,2] [,3]

[1,] "John" "Joe" "Jim"

[2,] "Jane" "Julia" "Jackie"

Your Turn: Explore what happens if you only specify nrow or ncol,
also check out the byrow option

Accessing Elements of Matrices
As in Matlab you may access elements of a matrix by (1-based) indices or
again by logicals. Suppose A is again given as

A =

(
2 9 3
1 3 7

)

A <- matrix(c(2,1,9,3,3,7),nrow=2,ncol =3)

A[,1]

[1] 2 1

A[2,]

[1] 1 3 7

A[c(1,2) ,1]

[1] 2 1

A[c(1,3) ,1]

Error in A[c(1, 3), 1]: subscript out of bounds

A[c(TRUE ,FALSE) ,1]

[1] 2

where the first element denotes the the row and the second the column. You
can again use negative indices and ranges.

Matrix Operations
Let A and B appropriately sized matrices, x and y appropriately sized
vectors and n an integer.

Command Effect

A%*%B A · B (matrix multiplication)
A%*%x A · x (matrix times vector)
t(A) A′ = AT)
solve(A) A−1

solve(A, x) A−1 · x1

crossprod(x, y) x · y = 〈x , y〉
A%o%B Kronecker product of A and B
diag(A) Returns the diagonal elements of A
diag(x) Constructs a quadratic matrix with x on the diag-

onal
diag(n) Gives a n-dimensional identity matrix
eigen(A) Gives the eigensystem of A
det(A) Gives the determinant of A
chol(A) The Cholesky decomposition of A
cbind(A, x) Add (attach) column x to A
rbind(A, x) Add (attach) row x to A

1Numerically more stable than solve(A)%*%x

Overview

R Language Fundamentals

R Datatypes

R Objects
Vectors
Matrices
Lists
Data Frames
Factors

Conversion

Lists
A list is loosely speaking a more general vector (similar to e.g., the Java
Vector object) A list can contain objects of different types and can be easily
accessed by names. Suppose you have two employees, Jane and Joe, that
have the following characteristics

Employee 1 Employee2

Name Jane Joe
Gender Female Male
Salary 62’000 60’000
Payment Group A G

In R you could cook this up as follows

emp1 <- list(name="Jane",male=FALSE ,salary =62000 , paymentgroup="A")

emp2 <- list(name="Joe",male=TRUE ,salary =60000 , paymentgroup="G")

Lists
If you then display an employee you will find the actual list structure

emp1

$name

[1] "Jane"

$male

[1] FALSE

$salary

[1] 62000

$paymentgroup

[1] "A"

Accessing Elements of Lists
Elements of list can be accessed differently, depending on your needs.

Command Effect

list[i] Gets sublist a position i
list[i:j] Gets sublist from position i to j
list[[i]] Gets the object at position i
list$name Gets the object at ‘name’
names(list) Names of the elements of list

a <- list(1,2,3)

names(a)

NULL

names(a) <- c("elem1","elem2","elem3")

a[1]

$elem1

[1] 1

names(a)

[1] "elem1" "elem2" "elem3"

Accessing Elements of Lists
To understand what has been introduced on the previous slides consider the
following examples:

emp1 [1]

$name

[1] "Jane"

emp1 [1:2]

$name

[1] "Jane"

$male

[1] FALSE

emp1 [[1]]

[1] "Jane"

emp1 [[1:2]]

Error in emp1 [[1:2]]: subscript out of bounds

emp1$salary

[1] 62000

Accessing Elements of Lists

Your Turn: Enclose all of the 5 statements of above in str command.
See what the differences are, i.e.

str(emp1 [1])

str(emp1 [1:2])

str(emp1 [[1]])

str(emp1 [[1:2]])

str(emp1$salary)

Overview

R Language Fundamentals

R Datatypes

R Objects
Vectors
Matrices
Lists
Data Frames
Factors

Conversion

Data Frames
Data frames is what you will probably encounter most frequently when using
R for applied work. A data frame is (typically) a two-dimensional structure
whose columns may contain different information types, i.e.

ID Name Height Male

12 Jane 170 FALSE
18 Joe 178 TRUE
99 Al 193 TRUE
...

...
...

...

Typically, you do not construct data frame manually, but they are the result of
some process (reading data, collecting data, etc.).
Dataframes are strictly speaking simply lists composed of vectors (columns)
of different datatypes with some added functionality.

Dealing with Data Frames

Command Effect

df[i,] The i th row of df
df[,j] The j th column of df
df$colname The column with name ‘colname’
df[, "colname"] The column with name ‘colname’
with(df,colname) The column with name ‘colname’
dim(df) Dimension of a df

nrow(df) Dimension of a df

ncol(df) Dimension of a df

head(df) The first 6 rows
tail(df) The last 6 rows
head(df, x) The first x rows
tail(df, x) The last x rows
names(df) The column names of a data frame.
summary(df) Summary of a df

As with vectors and matrices you can also use ranges i:j or negative
indices.

Dealing with Data Frames
Suppose you have a data frame named persons that contains the name, the
height, the gender and the id of several people.

head(persons)

id name height male

1 12 Jane 170 FALSE

2 18 Joe 178 TRUE

3 99 Al 193 TRUE

4 123 Martha 172 FALSE

5 7 Peter 182 TRUE

6 74 Julie 167 FALSE

summary(persons)

id name height male

Min. : 7.0 Length :10 Min. :166.0 Mode :logical

1st Qu.: 32.0 Class :character 1st Qu .:170.5 FALSE:6

Median : 82.5 Mode :character Median :173.5 TRUE :4

Mean : 71.2 Mean :175.2

3rd Qu .:102.0 3rd Qu .:177.8

Max. :123.0 Max. :193.0

Dealing with Data Frames
Display only people that are no taller than 170:

persons[persons$height <= 170,]

id name height male

1 12 Jane 170 FALSE

6 74 Julie 167 FALSE

7 103 Jackie 166 FALSE

Display only females

persons[persons$male == FALSE ,]

id name height male

1 12 Jane 170 FALSE

4 123 Martha 172 FALSE

6 74 Julie 167 FALSE

7 103 Jackie 166 FALSE

9 83 Cathy 174 FALSE

10 111 Maggie 173 FALSE

Dealing with Data Frames – Subsets
Display only people that are no taller than 170:

subset(persons ,height <=170)

id name height male

1 12 Jane 170 FALSE

6 74 Julie 167 FALSE

7 103 Jackie 166 FALSE

Display only females

subset(persons ,male==FALSE)

id name height male

1 12 Jane 170 FALSE

4 123 Martha 172 FALSE

6 74 Julie 167 FALSE

7 103 Jackie 166 FALSE

9 83 Cathy 174 FALSE

10 111 Maggie 173 FALSE

Dealing with Data Frames – Subsets
The subset command is often handier since it allows for easier notation.
subset returns the rows of the data frame that match the criteria given.
Moreover, criteria can be combined with logical operators:

all records that are male AND shorter than 180

subdataframe <- subset(persons ,male==TRUE & height <= 180)

subdataframe$name

[1] "Joe" "Bob"

all records that are either female OR greater than 180

subdataframe <- subset(persons ,male== FALSE | height >= 185)

subdataframe$name

[1] "Jane" "Al" "Martha" "Julie" "Jackie" "Cathy" "Maggie"

Dealing with Data Frames – Subsets
Combining Logical Statements can also be done. Suppose you want to get all
records that are

(female AND greater than 170)
OR

(male AND greater than 185)

subdataframe <- subset(persons ,(male == F & height >=170) | (male==T

& height >=185))

nrow(subdataframe)

[1] 5

subdataframe$name

[1] "Jane" "Al" "Martha" "Cathy" "Maggie"

Dealing with Data Frames – Modifying Data
Suppose that in the persons data frame the height of all men has been
measured on scale which always gives 2cm too much. You want to correct
this in the data frame.

create a copy

pmod <- persons

subtract 2 cm

pmod[pmod$male==F,"height"] <- pmod[pmod$male==F,"height"] - 2

or alternatively

create a copy

pmod <- persons

subtract 2 cm

pmod$height[pmod$male==F] <- pmod$height[pmod$male==F]-2

Dealing with Data Frames – Modifying Data Frames
Suppose you have the weights of these persons in a vector called mweights

(measured weights). To add it to the data frame you may proceed as follows

extpersons <- persons

extpersons$weight <- mweights

head(extpersons ,2)

id name height male weight

1 12 Jane 170 FALSE 62

2 18 Joe 178 TRUE 85

or

extpersons <- persons

extpersons[,"weight"]<- mweights

or

extpersons <- cbind(persons ,mweights)

head(extpersons ,2)

id name height male mweights

1 12 Jane 170 FALSE 62

2 18 Joe 178 TRUE 85

Overview

R Language Fundamentals

R Datatypes

R Objects
Vectors
Matrices
Lists
Data Frames
Factors

Conversion

Factors

The reason for having factors is induced by the following taxonomy of
attributes. An attribute can be of any of the three types

Scale Example

Nominal gender, colors, etc.
Ordinal grades, day of week, etc.
Interval Age, time, etc.

Interval scales are mapped to R by numeric, however, to account for
either a nominal or ordinal scale of a variable R has the factor

object.

Factors vs. vectors of characters

x <- c("blue", "green", "blue", "blue", "red")

x

[1] "blue" "green" "blue" "blue" "red"

str(x)

chr [1:5] "blue" "green" "blue" "blue" "red"

summary(x)

Length Class Mode

5 character character

xf <- factor(c("blue", "green", "blue", "blue", "red"))

xf

[1] blue green blue blue red

Levels: blue green red

str(xf)

Factor w/ 3 levels "blue","green ",..: 1 2 1 1 3

summary(xf)

blue green red

3 1 1

Ordered Factors
Consider for instance weekdays as example for an ordinal scale.

wdays <- c("Sat", "Mon", "Tue", "Wed", "Thu", "Sat", "Sun", "Mon",

"Tue", "Wed")

fwdays <- factor(wdays)

levels(fwdays)

[1] "Mon" "Sat" "Sun" "Thu" "Tue" "Wed"

However, for weekdays it makes sense to maintain their natural order. This
can be done as follows

ofwdays <- factor(wdays , levels=c("Mon","Tue","Wed","Thu","Fri","

Sat","Sun"))

ofwdays

[1] Sat Mon Tue Wed Thu Sat Sun Mon Tue Wed

Levels: Mon Tue Wed Thu Fri Sat Sun

levels(ofwdays)

[1] "Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun"

Overview

R Language Fundamentals

R Datatypes

R Objects
Vectors
Matrices
Lists
Data Frames
Factors

Conversion

Going round – Converting objects

Since each object in R has its own type it sometimes required to
convert from one to another. A non-exhaustive list is given below

Command Effect

as.character converts to a character objects (from
e.g, numerical or factor)

as.numeric converts to numerical object
as.matrix converts an object (data frame) to a

matrix (if possible, watch out if the orig-
inal object consists of different types)

as.vector converts to a vector (from e.g., a ma-
trix)

as.data.frame converts an object (typically a matrix)
to a data frame

as.Date converts an object (typically a charac-
ter object) to a Date object (not yet in-
troduced)

Converting Objects
Some hints:

I Converting a factor to a numerical value: Make sure to first convert it to a
character vector and only then to a numerical vector, otherwise you will
just get the factor levels.

I To see all possible conversions: methods("as")

	R Language Fundamentals
	R Datatypes
	R Objects
	Vectors
	Matrices
	Lists
	Data Frames
	Factors

	Conversion

