lehrkraefte:blc:miniaufgaben:kw18-2024

Dienstag 30. April 2024

Die folgenden Funktionen haben genau zwei Wendestellenkandidaten. Bestimmen Sie diese.

Lösungen

Lösungen

ruby extremalstellen-von-polynom-3ten-grades.rb 2

Mittwoch 1. Mai 2024

Eine Funktion 3. Grades hat die Form $f(x)=ax^3 + bx^2 + cx + d$ mit $a,b,c,d \in \mathbb{R}$ und $a\neq 0$.

Erklären Sie, warum eine Funktion 3. Grades

  • a) mindestens eine Nullstelle haben muss.
  • b) entweder genau 2 oder keine lokale Extrema hat.
  • c) immer genau eine Wendestelle hat.

Lösungsvorschlag

Lösungsvorschlag

  • a) Für betragsmässig genug grosse $x$ dominiert der Term $ax^3$ alle anderen Terme der Funktion. D.h. für $x \to \infty$ hat $f(x)$ das gleiche Vorzeichen wie $a$, für $x \to -\infty$ das entgegengesetzte Vorzeichen. Die Funktion ist stetig, d.h. der Funktionsgraph macht keine Sprünge und hat keine Lücken. Da der Funktionsgraph für sehr kleine $x$ und sehr grosse $x$ einmal oberhalb und einmal unterhalb der $x$-Achse verläuft, muss er die $x$-Achse dazwischen mindestens einmal schneiden, d.h. die Funktion muss eine Nullstelle haben.
  • b) Die Ableitung ist eine quadratische Funktion, die genau 2, eine oder keine Nullstellen hat.
    • Keine Nullstellen, heisst keine Extrema.
    • Genau eine Nullstelle heisst, die Ableitung hat die Form $f'(x)=u\cdot(x-v)^2$, mit $v$ als «doppelter» Nullstelle (mit $u\neq 0$). Damit ist die zweite Ableitung $f''(x)=2u \cdot (x-v)$ und damit ist $f''(v)=0$ und $v$ ein Wendestellenkandidat. Weiter ist $f'''(x)=2u \neq 0$, womit wir eine echte Wendestelle mit horizontaler Tangente haben, also ein Sattelpunkt und somit keine Extremalstelle.
    • Zwei Nullstellen heisst, die Ableitung hat als quadratische Funktion die Form $f'(x)=u\cdot(x-v)(x-w) = u(x^2-(v+w)x+vw)$ mit $v \neq w$ den Nullstellen und $u \neq 0$. Die zweite Ableitung ist $f''(x) = u \cdot (2x-(v+w))$ und damit $f''(v)=u(2v-v-w) = u(w-v) \neq 0$ und $f''(w)=u(2w-v-w)=u(v-w) \neq 0$. Damit sind $v$ und $w$ zwei «echte» Extremalstellen von $f$.
  • c) Die zweite Ableitung ist $f''(x)= 6ax+2b$ und hat genau eine Nullstelle, nämlich $-\frac{b}{3a}$, die immer existiert (wegen $a\neq 0$). Die dritte Ableitung ist konstant $f'''(x)=6a \neq 0$, womit eine Wendestelle vorliegt.
  • lehrkraefte/blc/miniaufgaben/kw18-2024.txt
  • Last modified: 2024/04/23 10:13
  • by Ivo Blöchliger